

Table des matières

Accouplements Renold	3
Renoldflex	4
Dimensions des rainures	5
Données techniques Renoldflex	6-7
Sélection de tailles d'accouplement	8
Types d'accouplement Renoldflex	9
Services internationaux	10

L'innovation au quotidien

Renold innove dans le secteur depuis 1879. Les accouplements Renold sont utilisés dans l'industrie dans le monde entier, qu'il s'agisse de la marine, des grues et des palans, de l'industrie manufacturière, des transports en commun ou de l'industrie du papier et de la pâte à papier. Nos accouplements relient les machines entre elles grâce à des produits disponibles en stock et à des connexions sur mesure, toutes fabriquées dans nos usines d'ingénierie de haute technologie.

Performant en matière d'ingénierie

Nous disposons de notre propre équipe d'ingénieurs concepteurs qui travaille à l'amélioration continue de la gamme des produits existants, à l'introduction de nouveaux produits et à la fourniture de nouvelles solutions innovantes pour relever les défis de nos clients.

Support à l'échelle mondial

Avec des usines de fabrication sur 4 continents et des bureaux d'assistance dans plus de 30 pays, Renold Couplings peut offrir un service qui répond aux exigences et aux défis de votre marché.

Fabricant britannique

Depuis 1946, Renold Couplings fabrique une gamme complète d'accouplements et d'embrayages.

Basé à Cardiff, au Royaume-Uni, nous contrôlons l'ensemble du processus de conception et de fabrication, ce qui nous permet d'offrir une qualité de premier ordre et une totale tranquillité d'esprit à nos clients.

Disponibilité

Renold Couplings dispose d'un stock important d'articles standard et de pièces détachées, à la fois dans ses installations au Royaume-Uni et chez ses partenaires dans le monde entier.

Renold Couplings est en mesure de fournir des délais de fourniture rapides pour les pièces fabriquées, car nous contrôlons l'ensemble du processus de fabrication.

Renoldflex

Un accouplement rigide à la torsion, sans jeu, avec une capacité de désalignement. Conçu pour être utilisé à hautes vitesses de fonctionnement et à des températures élevées.

Capacité d'accouplement

- Puissance maximum à 100 t/min : 482 kW
- Couple maximum:
 46 000 Nm (avec des éléments flexibles HTT)

Généralités

- Construction intégralement en acier
- · Moyeux en acier
- Éléments flexibles en acier inoxydable laminé

La gamme standard comprend

- Arbre sur arbre
- Type entretoise

Applications

- Pompes
- Ventilateurs
- Souffleurs
- Manutention de matériaux
- Entraînements par servomoteur
- Machines-outils
- Presses
- Grues
- Turbines éoliennes
- Applications industrielles générales

Caractéristiques et avantages

- Rigide à la torsion, parfait pour les machines de précision
- Sans entretien longue durée de vie avec peu d'usure
- Capacité de désalignement permettant une grande flexibilité

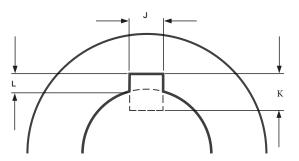
 Discrete le signe.
- L'absence de jeu garantit la précision opérationnelle
- Températures de fonctionnement élevées, accouplement adapté à une utilisation dans des environnements difficiles, à des températures pouvant atteindre 240 °C
- Versions avec moyeu à alésage conique et cône de serrage
- Éléments flexibles à couple transmissible élevé (HTT) disponibles à partir de la taille 70
- Hautes vitesses de fonctionnement
- Configurations multiples s'adapte facilement à vos systèmes existants
- Grandes quantités de stock disponibles chez Renold

Dimensions des rainures

Métrique (mm)

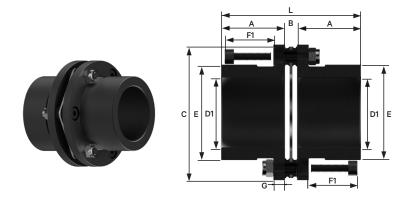
Les rainures sont conformes à la norme BS4235: Partie 1: 1972

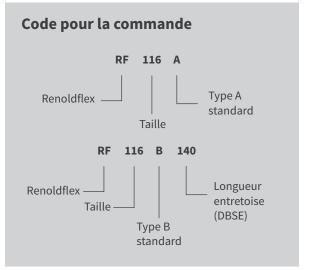
Dia. de	l'arbre		Rainure	
Sur	Inclus	J	K	L
6	8	2	2	1,0
8	10	3	3	1,4
10	12	4	4	1,8
12	17	5	5	2,3
17	22	6	6	2,8
22	30	8	7	3,3
30	38	10	8	3,3
38	44	12	8	3,3
44	50	14	9	3,8
50	58	16	10	4,3
58	65	18	11	4,4
65	75	20	12	4,9
75	85	22	14	5,4
85	95	25	14	5,4
95	110	28	16	6,4
110	130	32	18	7,4
130	150	36	20	8,4
150	170	40	22	9,4
170	200	45	25	10,4
200	230	50	28	11,4


Impérial (pouces)

Les rainures sont conformes à la norme BS46: Partie 1: 1958

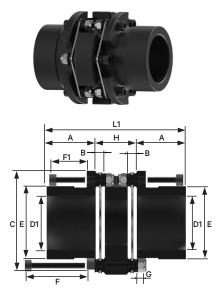
Dia. de	l'arbre		Rainure	
Sur	Inclus	J	К	L
0,25	0,05	0,125	0,125	0,060
0,50	0,75	0,187	0,187	0,088
0,75	1,00	0,250	0,250	0,115
1,00	1,25	0,312	0,250	0,090
1,25	1,50	0,375	0,250	0,085
1,50	1,75	0,437	0,312	0,112
1,75	2,00	0,500	0,312	0,108
2,00	2,50	0,625	0,437	0,162
2,50	3,00	0,750	0,500	0,185
3,00	3,50	0,875	0,625	0,245
3,50	4,00	1,000	0,750	0,293
4,00	5,00	1,250	0,875	0,340
5,00	6,00	1,500	1,000	0,384


Dimensions des rainures

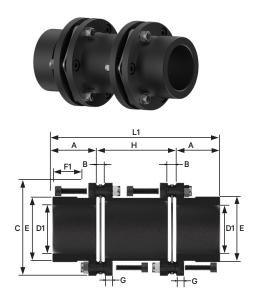

Les rainures fournies sont parallèles sauf indication contraire du client.

Renoldflex

Type A



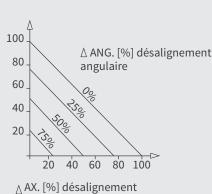
Numéro du catalogue	A mm	B mm	C mm	Pré- alésé	Alésage max	E mm	F ₁	G mm	Longueur entretoise		-		-		-		L mm	L ₁ mm	Poid	s des accouplemer	its
				D mm	Dı* mm				H mm				Moyeu (pré-alésé) kg	Blocs disques kg	Entretoise kg						
40	17	2,9	40	6	15	26	15	4	16 26		36,9	50	Veuill	ez consulter Rer	old						
53	24,5	6,9	53	6	22	32,5	25	5	30 39		55,9	79 88	0,2 0,2	0,6 0,7	0,2 0,2						
70	39,5	7,5	70,5	10	35	47	25	5	31,2 60 100 140		86,5	110,2 139 179 219	0,6 0,6 0,6 0,6	0,1 0,1 0,1 0,1	0,3 0,3 0,5 0,6						
88	45	8,8	88,3	14	45	62,5	32	8	37,6 70 80 100 140	Disponible jusqu'à 3000 mm sur demande	98,8	127,6 160 170 190 230	1,2 1,2 1,2 1,2 1,2	0,1 0,2 0,2 0,2 0,2	0,6 0,7 0,7 0,8 1,1						
116	55	10,4	116,5	15	60	82	40	10	46,3 100 140 180	squ'à 3000 mr	120,4	156,3 210 250 290	2,4 2,5 2,5 2,5	0,3 0,2 0,2 0,2	1,3 1,4 1,7 2,0						
140	60	12	140,5	19	75	98	47	11	55 100 140 180	oisponible jus	132	175 220 260 300	3,7 3,9 3,9 3,9	0,4 0,4 0,4 0,4	2,3 2,1 2,6 3,0						
166	75	13	166,5	25	90	118	56	12	62,6 100 140 180		163	216,6 250 290 330	7,0 7,0 7,0	0,9 0,9 0,9	3,2 3,8 4,5						
198	90	15	198,5	30	100	141	64	14	71,8 140 180		195	251,8 320 360	11,8 11,8	1,4 1,4	5,2 6,0						
238	125	20,8	238	39	120	169	81	16	140 180		270,8	392,4 432,4	23,3 23,23	2,2 2,2	10,0 11,8						
295	160	28	295	59	150	205	112	22	200 250		348	520	Veuill	ez consulter Rer	old						
345	200	32	345	79	180	254	133	26	224 250		432,2	624 650	Veuill	ez consulter Rer	old						


^{*}Utiliser l'alésage maximal D1 uniquement pour une charge uniforme. Pour une classe haut rendement, alésage maximal : $D_1 = \frac{E}{1,45}$

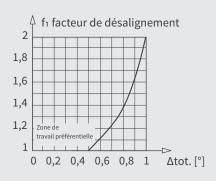
Renoldflex

Type B H-MIN

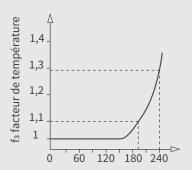
Type B



				Renoldflex type B Bloc disque double					R	igidité à la torsion	***				
Taille	Couple nominal T* Nm	Vitesse maxi V**	Di	ésalignemer	it	Inertie J	Longueur	Longueur entretoise		ésalignem	ent	Inertie J	Bloc disque CK	Entretoise CH	C TOT Nm/rad
		tr/mn	Décalage radial mm	Axial mm	Angulaire (*)	kg m²	H mm		Décalage radial mm	Axial mm	Angulaire (*)	kg m²	Nm/rad	10 ⁶ Nm mm/rad	Milyida
40	18	12000	0	0,4	0,75	0,00002	16 26		0,2 0,3	0,8	1,75	0,00005 0,00004	Veuill	ez consulter I	Renold
53	75	10000	0	0,4	0,75	0,00011	30 39		0,3 0,4	0,8	1,5	0,00016 0,00019	113406	4,1	56703 41988,45
70	170	8400	0	0,5	0,75	0,00049	31,2 60 100 140	a	0,3 0,7 1,2 1,4	1,1	1,5	0,00071 0,00076 0,00081 0,00087	142464	11,8	71232 56065,02 47142,56 40670,11
88	320	6800	0	0,6	0,75	0,00164	37,6 70 80 100 140	nm sur demande	0,4 0,8 0,9 1,2 1,7	1,2	1,5	0,00218 0,00252 0,00256 0,00265 0,00282	200260	51,6	100130 90889,35 89316,32 86328,13 80913,99
116	750	5400	0	0,8	0,75	0,00991	46,3 100 140 180	squ'à 3000 r	0,5 1,2 1,7 2,2	1,6	1,5	0,00795 0,00928 0,00986 0,01047	341665	130,4	170832,5 154769,46 147752,84 141344,84
140	1350	4600	0	1	0,75	0,01359	55 100 140 180	Disponible jusqu'à 3000 mm	0,7 1,1 1,7 2,2	2,1	1,5	0,01824 0,02093 0,02179 0,02264	503858	236	233020,5 224165,39 215958,66
166	2400	3800	0	1,2	0,75	0,0345	62,6 100 140 180		0,7 1,1 1,7 2,2	2,5	1,5	0,05175 0,05379 0,05584	938363	576,1	442511,2 429319,64 416891,81
198	4000	3400	0	1,4	0,75	0,08368	71,8 140 180		0,7 1,6 2,2	2,8	1,5	0,12413 0,12736	1258733	959,8	587023,07 573004,37
238	6500	3000	0	1,7	0,75	0,22773	140 180		1,6 2,1	3,4	1,5	0,33419 0,34564	23,3 23,23	2,2 2,2	10,0 11,8
295	21000	2500	0	1,1	0,5	0,7	200 250		1,4 1,8	2,2	1	1,07 1,1	Veuillez consulter Renold		
345	36000	2100	0	1,3	0,5	1,75	224 250 300		1,6 1,8 2,2	2,6	1	2,62 2,64 2,68	Veuill	ez consulter I	Renold


[fig 02] schéma de désalignement

axial



[fig 03] facteur de désalignement f

Remarque: il convient de tenir compte du changement de désalignement qui survient pendant le fonctionnement. Ex. en raison de l'expansion thermique.

[fig 04] facteur de température f₂

Température de fonctionnement

Pour des applications à des températures supérieures à 80 °C, il faudra le préciser sur la commande.

Sélection de tailles d'accouplement Renoldflex

Afin de sélectionner la taille d'accouplement la mieux adaptée, il faut impérativement tenir compte des facteurs de service. Ces facteurs de service entraînent des ajustement du couple de conception (T) d'une application, pour tenir compte des facteurs de service tels que le désalignement, la classification de la charge, la classification de l'entraînement, ainsi que les températures ambiantes élevées pour produire un couple de sélection (T_S , où $T_S = T \times f_S$). L'accouplement le mieux adapté est alors sélectionné en comparant le couple de sélection (T_S) et le couple nominal des accouplements (T_N). Remarque : il est important de s'assurer que l'accouplement sélectionné sera adapté aux diamètres d'arbre sélectionnés. Si le diamètre d'arbre est supérieur à la valeur maximale autorisée, il faudra sélectionner un accouplement plus grand.

Le facteur de service total $f_S = f_1x \, f_2 \, x \, f_3$, où f_1 est le facteur de désalignement, f_2 est le facteur de classification de charge et f_3 est le facteur de température. Remarque : le facteur de classification de charge est pondéré en fonction de la classification du moteur principal. Ces facteurs de service sont définis ci-dessous :

Facteur de désalignement f₁

Les désalignements maximum cités dans les données techniques pour la gamme d'accouplements Renoldflex ne peuvent pas être présents simultanément. Par conséquent, la présence d'un quelconque désalignement axial Δax réduit la possibilité d'un désalignement par décalage Δrad et d'un désalignement angulaire Δang , voir la [fig 02]. Le désalignement angulaire total combiné ΔTOT est une fonction du désalignement angulaire Δang et du désalignement angulaire Δrad des arbres, selon la formule suivante :

$$\Delta TOT [°] = \frac{\Delta ang}{2} + arctan \frac{\Delta rad}{(H-B)}$$

Les valeurs H et B [mm] sont données dans le tableau des dimensions générales. Le facteur de désalignement f_1 est une fonction de Δ TOT comme indiqué à la [fig 03].

Facteur de charge f₂

Les facteurs de charge suivants concernent des machines actionnées par un moteur électrique ou hydraulique, ainsi que des turbines à vapeur ou à gaz.

Machine motrice	Facteur de charge f ₂
Souffleurs : inertie faible	1,1
Souffleurs : haute inertie, tours de refroidissement	2,0
Pompes centrifuges : inertie faible et liquides légers	1,1
Pompes centrifuges : haute inertie ou matériaux semi-liquides	1,75
Convoyeurs	1,5
Élévateurs et grues	2,0
Pompes à engrenage	1,5
Machines-outils: entraînements auxiliaires	1,1
Machines-outils : entraînements principaux	1,75
Laminoirs	2,5
Machines à papier et machines pour textiles	2,0
Presses	3,0
Pompes à piston	2,5
Machines à bois	1,5

Pour les machines fonctionnant avec un entraînement principal alternatif, le facteur de charge f₂ doit être ajusté comme suit :

- \bullet $f_2\text{+1}$ pour les machines fonctionnant avec des moteurs IC avec 4 ou 5 pistons.
- f₂+0,5 pour les machines fonctionnant avec des moteurs IC avec
 6 pistons, les turbines hydrauliques ou un couple de démarrage
 >2.
- Il convient de prendre en compte les éléments suivants pour des applications répétitives à couple crête élevé :
- Pour un système anti-retour : T> couple crête
- Pour un système de retour : T> 1,5 du couple crête

Facteur de température f₃

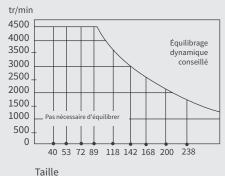
Les accouplements Renoldflex ne sont pas affectés par la température jusqu'à 160 °C. Pour des applications à des températures plus élevées, il convient de tenir compte du facteur de température f_3 indiqué à la [fig 04].

- Renoldflex accepte 1,75 fois la valeur nominale
- ** Voir [fig 05] et [fig 06]
- *** La rigidité à la torsion d'un accouplement avec bloc simple est comparable à celle d'un bloc simple Ck

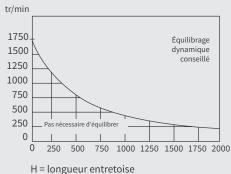
L'angle de torsion d'un accouplement à bloc simple

$$[\circ] = \frac{180 \quad T}{\pi \quad C_{k}}$$

La rigidité à la torsion d'un accouplement à bloc double est comparable à :


 $\begin{array}{ccc} C & & & 1 & & H,B-voir dimensions générales \\ du catalogue & & & \hline {2+H-2B} \\ \hline {C_k} & & C_h \end{array}$

L'angle de torsion d'un accouplement à bloc double


$$[\circ] = \begin{array}{cc} 180 & T \\ \hline \pi & C_k \end{array}$$

T (Nm) - couple transmis

[fig 05] équilibrage Renoldflex type A

[fig 06] équilibrage Renoldflex type B

Équilibrage ; les éléments standard du Renoldflex sont équilibrés selon grade G6.3 - BS ISO 1940-1:2003. Il est conseillé de procéder à un équilibrage supplémentaire pour les applications dont la courbe de vitesse est supérieure aux valeurs des [fig 05] et [fig 06].

Type E/F

- Assemblage de l'entretoise avec moyeux inversés dans l'entretoise
- Permet un désalignement radial tout en maintenant une DBSE plus courte
- TYPE E 1 moyeu inversé
- Type F 2 moyeux inversés
- Versions avec des longueurs d'entretoise diverses

Type N/P

- Moyeu de serrage avec vis radiales
- TYPE N bloc disque simple
- Type P bloc disque double avec longueurs d'entretoise diverses
- Type Pmin bloc disque double avec longueur d'entretoise minimale

Type G/H

- Frette de serrage en 3 parties pour serrer l'arbre sur le moyeu
- Version en 2 parties aussi disponible
- Type G bloc disque simple
- Type H bloc disque double avec longueurs d'entretoise diverses
- Type Hmin bloc disque double avec longueur d'entretoise minimale

Type X/Y

- Moyeux fendus avec vis radiales
- Permet une installation rapide en une étape sans devoir déplacer l'équipement
- TYPE X bloc disque simple
- Type Y bloc disque double avec longueurs d'entretoise diverses
- Type Ymin bloc disque double avec longueur d'entretoise minimale

Type L/M

- Élément de serrage interne dans le moyeu
- TYPE L bloc disque simple
- Type M bloc disque double avec longueurs d'entretoise diverses
- Type Mmin bloc disque double avec longueur d'entretoise minimale

+

Configurations supplémentaires disponibles avec des méthodes d'installation alternatives.

Pour des informations complémentaires, veuillez vous adresser au service commercial Renold à Cardiff.sales@renold.com.

Service mondial

Siège social

Sites de Renold

Conditions générales d'utilisation

- Dans l'intérêt de la sécurité, il est rappelé aux clients que lorsqu'ils achètent un produit technique destiné à être utilisé sur le lieu de travail (ou autre), ils doivent obtenir auprès de leur bureau de vente local toutes les informations et conseils supplémentaires ou actualisés qu'il n'a pas été possible d'inclure dans la publication et qui concernent l'adéquation et l'utilisation sûre et appropriée du produit. Vous devez transmettre toutes les informations et conseils pertinents à la personne utilisant le produit, ou susceptible d'être affectée par celui-ci, ou responsable de son utilisation.
- Les niveaux de performance et les tolérances de nos produits indiqués dans ce catalogue (y compris, mais sans s'y limiter, le fonctionnement, la durée de vie, la résistance à la fatigue, la protection contre la corrosion) ont été vérifiés dans le cadre d'un programme d'essais et de contrôle de la qualité conformément aux recommandations de Renold, d'organismes indépendants et/ou de normes internationales. Les niveaux de performance et des tolérances pour l'application et l'environnement spécifiques du produit et les informations contenues dans ce document ne font pas partie de la description contractuelle du produit ni d'un contrat entre Renold et le client, par ailleurs aucune déclaration ou garantie n'assure que notre produit répondra aux niveaux

- de performance ou aux tolérances indiqués pour toute autre application.
- Bien que les informations contenues dans ce catalogue aient été compilées avec le plus grand soin, aucune responsabilité n'est acceptée en cas d'omissions ou d'erreurs.
- Toutes les informations contenues dans ce catalogue sont susceptibles d'être modifiées sans préavis.
- Les illustrations utilisées dans ce catalogue représentent le type de produit décrit, mais les produits fournis peuvent varier dans certains détails par rapport aux illustrations.
- Le droit d'apporter des modifications au produit pour répondre aux conditions de fabrication et/ou aux développements (par exemple en matière de conception ou de matériaux) est limité.
- Les produits sont fournis par les sociétés ou les représentants de Renold dans le monde entier, selon les conditions générales de vente de la société ou du représentant auprès duquel le produit est acheté
- Copyright Renold Power Transmission Limited 2001.
 Tous droits réservés.
- Les informations contenues dans ce catalogue ne constituent en aucun cas une offre de vente du produit.

Contactez-nous Pour connaître votre point de vente local de vente et de service +44 (0) 29 2079 2737 cardiff.sales@renold.com www.renold.com Wentloog Corporate Park Newlands Road, Cardiff CF3 2EU

